Xeray Astronooay School

Continuum Radiation

Introduction:
1. Radiation Quantities

e definitions
e what can we learn from x-ray astronomy
e continuum mechanisms
— radiation by an electron
— radiation by a population of electrons
— what we learn
— where this occurs

2. Bremsstrahlung
3. Compton Scattering

4. Synchrotron Radiation
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Radiation Quantities

Allen, C.H., “The Atmospheres of the Sun and Stars” Ronald Press 1983, pp 141
Chandrasekhar, S.; 1950 “Radiation Transfer” Dover, NY 1950

Everything we learn in X-ray Astronomy results
from the emission and absorption of radiation.

We need to define certain radiation quantities.
These include the quantities which we measure
directly, and the idealized quantities which can
be calculated from 1st principles physics.

T'he 1ssues to keep in mind are

e Surface brightness (per unit solid angle) vs.
a flux of parallel radiation?

e Distinguishing a quantity AT a specific nar-
row energy band vs a quantity integrated
OVer energy.

e Reporting a quantity of photons vs a quan-
tity of energy.
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Radiation (Quantities

The elementary quantity is the SPECIFIC INTENSITY
L,(Q) or I.(S2),

the energy of radiation, of frequency v or energy € = hv,
which passes through a unit area, at polar angle ¢, per
unit solid angle per unit time.

dE, =1, cos8dA dv dS)dt (1)

We define the SPECIFIC FLUX or FLUX DENSITY
Fo = Jolv cos8dS2 (2)

[n particular, we have the broadband, or integral, photon

flux £
F = / "2 -———du (3)

This would be measured in a perfe(,t detector with re-
sponse from vy to s, and is the total flux if v; — 0 and
V9 — OQ.
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What do we want to learn from
continuum spectra’

1. Total power output |

2. Energy budgets

3. Lifetimes

4. Temperatures (where applicable)

5. Magnetic field strengths (where applicable)
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Continuum radiation comes virtually exclusively
from electrons, since for a given force their ac-
celeration is 1836 times higher than that of pro-
tons. We usually infer a power law distribution:

n(y) =ngy " (4)
electrons/cm? (unit ), in a range 1 to ¥s. |
Since the total energy density in electrons is

ngme?

Ue= ——50i ™ =%, ()
we usually only care about either vy, if m > 2,
or 9, if m < 2. (For m=2 we replace by a Log.)
So we are learning about electrons, AND what-
ever exerts the force to make them radiate. In
my exposition 1'll start with the radiation by a
single electron, then develop the volume emis-
sivity of a population of electrons. I'll try to
point out what we learn, and in what situations

it may be encountered.
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Electron Radiation

Radiation is emitted when electrons are accelerated. (.

Jackson, 1962, “Classical Electrodynamics,” ch 14; Lang, 1974, “Astrophysical Formulae,”
ppl9.) .
P _ & nx [n—p) x B 6
dQ)  4dme (1—n-B)° (6)
Fxpanding the motion as a Fourier integral gives the spec-
tral intensity:

d[<w)__ 62 O DX[( B>Xﬁ] zw nr C
. 4'7r'c| oo 8 (1—n-B)? ! )!
(7)

In the non-relativistic case there is the classical Larmour
formula:

dP €
dQ  4ncd
KEY FEATURES:

e For extreme relativistic particles, § ~1, the radiation
is highly beamed within a cone of half angle 6 ~ 1/~.

sin” 607 (8)

e Eq (7) — 0 as w — 00, so total energy converges.
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Continuum Mechanisms

References: Rybicki and Lightman, “Radiation Processes in Astrophysics,”
Tucker, “Radiation Processes in Astrophysics,”
Blumenthal and Gould, Rev. Mod. Phys.

We will consider the following processes:

1. Bremsstrahlung
B due to collision with a proton (or heavy
particle)

2. Compton Scattering
B due to collision with a photon

3. Synchrotron Radiation
B3 due to centripetal acceleration in a mag-
netic field
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Bremsstrahlung

In brems, the electron radiates a broad spectrum up to
its total energy. In the X-ray range 0.1 to 10 keV, we will
be interested in electrons up to a few 10’s of keV, but still
quite less than 511 keV. So we will take 8 < 1 in the

general formula

dl(w) €’ nx[(n—g)x iolt= () )

ds? :47rcl/fooodt (1-—n-p5)? c
(9)

to give the dipole approximation

UW) @ s
20 = il edtnx [(n>x Gl (10)

We can consider the collision taking place over a time
7 = b/v for an impact parameter b, so that

dl(w) e
—ZZ%) — 42--§- sin” 0 [Av]* w < 1/7
e
dl(w)

df

—0w>1/7. (1)
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Bremsstrahlung cont.

Now consider an electron hitting a proton (avoids fac-
tors of Z?). For any impact parameter b, a very quick
encounter with a massive particle gives a deflection  2=m &V

2e?
AV = . (1)
miguvb
Integrating over angles gives the spectral power radiated
in an encounter at b,

2
8 2ec

P(Vv b) 2b2 (2)
Integrate over all impact parameters to get the cross sec-
tion for an electron to radiate at a frequency v

o(v,v) = /OOO P(v,b)2rbdb = 13662(3%]— In(braz/bmin)

(3)
Where by, ~ h/muv from the uncertainty principle, and
bnae ~ v/w. A quantum mechanical Born approxima-
tion, conserving energy, defines the log factor so that an
electron of energy E radiates photons of energy € propor-
tional to In <\F+‘/’> Cfore < E.
KEY FACT: For a Smffle electron, the ratio of bremsstrahlung
to ionization = 10_3(\7)/0)2.
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Bremsstrahlung Applications
1. Solar x-rays

e Thin target
e Thick target

2. Ground x-ray calibrations

e Flectron impact used to excite lines, but
extraction of continuum from data is es-
sential for correct calibration of the re-
sponse

3. Thermal Brems in clusters of galaxies

e Total thermal energy

e Abundances

e Cooling lifetime

e Pressure - interaction with radio structures
e Total mass via hydrostatic equilibrium

e Luminosity distance via >-Z eflect
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Thermal Bremsstrahlung

Consider bremsstrahlung from a collection of electrons
N(v) = ng f(v) with a normalized distribution f of ve-
locities v. The spectral emissivity per unit volume is
s(e,v) = N(v) Nyvo(e,v). For a distribution of electrons
in statistical equilibrium at temperature T,

f('U) —_ 47-(-7)/0(27:-7;7_’)3/26—m1}2/(iZkT)UfZ7 (14)

and 1f we take the electron and proton densities to be
equal, the observed spectral energy intensity is

T \ L oo g L(Q) . 10——1177% —e/kT :
Io(e) = |, dz /\/27 dv s(e,v) = [, dx e " g(Te)

Where the averaged gaunt factor can be approximated by

V3. 4kT
T_ p 1
gilse) = T-lngmme e <A
g(T €)= (¢/kT) " e~ kT (15)
The total rate of energy emitted per unit volume is
oo dl |
P = |, dee—.]4><10 VTnk g(T)  (16)

and the electron lifetime 1s
T = 37’1,0 kT/P( ) =1.72 X v /TLQ (]7)
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Compton Scattering
We are interested in two applications.

Classical Compton Scattering: A photon loses
energy in collisions with electrons. This mod-
ifies the photon spectrum (Compton Reflec-
tron) and transfers energy to the electrons (Ac-
cretion disk coronae).

Inverse Compton Scattering: Net energy 1s trans-
fered from extreme relativistic electrons to pho-
tons. The produces observed X-rays in radio
source cores, jets, and lobes; it may be signifi-
cant in pulsars and cores of all AGN.
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Compton interaction

A low energy photon of incident energy z' me? will Comp-

ton scatter through an angle 8 with cross section

g% = %rg (1 + cos®8). (18)
The total cross section is the Thomson cross section
or = %71 78 = 6.65 X 10~2°cm?.
Kinematics gives the energy of the scattered photon as
© mc?, where

xl

"1+ 2/(1— cosf)
KEY FEATURES:
o /(1 +22) <z <a

T (19)

efor ~0, z=1
ofor v’ <1, z>1
e for 2’ > 1, and d not near 0, z ~ 1

For completeness, the Klein-Nishina cross section valid

for arbitrary energies 1s

do 1 5, 2.,7 =
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COMPTON REFLECTION OF y-RAYS BY COLD ELECTRONS
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POUNDS et al. 1989
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Accretion Disk Coronae

One photon in one scattering transfers an average energy

1 20
[ (@ — o) *;OS snfdode ~ (z) (1)

So a blackbody distribution of photons transters energy
to cold electrons at a rate

4OTnOkT’p, p=al*

mc
and in general 7" = Tphotons — Lelectrons- 1 his can provide
energy from a population of photons to heat electrons.
Typically, an accretion disk corona is much hotter than
an optically thick disk which may underlie it, so that net
energy flows from the electron population and modifies
the X-ray spectrum.
This complex process is governed by the Kompaneets dif-
fusion equation, (cf. work by Titarchuk; Sunyaev; and
collaborators).
To fair accuracy, low energy photons form a power spec-
trum with an energy index

a=19/4 +1/y—3/2 ifkT <mc* andy = O(1)
kT, 37°

mc2 w2

For y >> 1, the spectrum has a Wein exponential cutofl.

where y =
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Inverse Compton Scattering
Reference: Felten and Morrison, 1966, ApJ, 146, 686.

When the electrons are highly relativistic, collision with a
low energy photon can result in the latter being scattered
mnto the X-ray band. The formalism follows fairly directly
from classical Compton scattering, by transforming to the
rest frame of the electron before the collision, and back
to the observer’s frame afterwards.

In the electron rest frame the incident photon has energy
Te = YT, (1— B cosh). If the photon to electron velocity
angle is , in the lab, relativistic aberration gives

— Sln 90 . ; , ~
tan @, = TTeosBi ) which is very close to 0 unless 0, ~ .

After the collision, the photon has scattered through an
angle ¢' to an energy z/ = oy B 7 and in the ob-
server's frame x, = vy z(1 + B cos§’).

KEY RESULT: Taking all the angles to be near 0, so all
the cos are near 1, we have
)~ Ny,
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Inverse Compton: Power and Spectrum
Reference: Blumenthal and Gould, 1970, Rev Mod Phys

We see that electrons with v ~ 10? can scatter infrared
photons to the X-ray band, and with v ~ 10° would
scatter the 3° microwave background photons to X-ray
energies.

The rate of scattering is orvng = orc ;f.,
0

so the total power is Po(y) = $v* orcp = 2.66x 107442 p

2x10*19sec

2

. _ v p[e\/ / cm ]
The actual spectrum radiated by an electron is not monochro-

matic. Blumenthal and Gould give the shape of the pho-
ton spectrum radiated by an electron of energy - hitting
a photon of energy x as a parameterized function of the

and the electron lifetime is 7o = v mc?/ Po(y) =

variable
.
Y= 4yr

fly) =2ylny+y+1— 27 (22)
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Compton Spectrum of single electron
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Inverse Compton from a Distribution of Electrons

In astronomical applications, inverse Compton is compli-
cated by the need to integrate over distributions of elec-
trons and target photons, (as well as scattering angles).
Although the spectrum of a single electron is broad, as we
just saw, when we integrate over a power law population
of electrons n(y) = ngy~™, we often use the approxima-
tion (Hoyle, 1960) that the electron spectrum is a delta
function at some mean energy. Following Felten and Mor-

rison (1966) we take E¢ = 572 zmc?.

If we average over a blackbody spectrum of target pho-
tons, their mean energy is x mc® = 2.7kT. Taking a path
length L through the source (as a short cut for integrat-
ing), we have the specific energy intensity

I(Eg) = L [ dy Po(y)n() 6(Ee —~ 3.60" kT)
= 1000(56.9)* ™ngLp T B2 eV /(eV cm?secster)
KEY FEATURES:

e For an electron spectral index m, the X-ray energy
index is a = (m — 1)/2.

o If we can estimate p, ng L is the only unknown.
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Synchrotron Radiation

Synchrotron is the ubiquitous radio emission mechanism.
It provides unique information on the magnetic field strengths,
and on field directions via the observation of polarization.
It can be an important X-ray emission mechanism in pul-
sars and supernovae remnants, and for X-rays from the
jets, hotspots, lobes, and perhaps cores of extragalactic
radio sources. There is a powerful synergy when we can
observe Compton X-ray emission from the same popula-
tion of electrons which give radio synchrotron emission.
[ will quote some formulas and point out the analogies to
inverse Compton emission. The total power radiated by

an electron 1S
Ps(7) = 2r§ ey*Hy = 9.89 x 1071992 H, [uG] eV /sec.

KEY FEATURES:
PS H"/87T

e The relative powers o are the ratio of energy
densities in magnetic field and in photons.

. . . 20
e Electron lifetime i1s 7¢ = %}(QL seconds.

uG
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Fig. 3.2. A relativistic particle spiraling in a magnetic field emitting synchrotron radiation with the
angular pattern as indicated.
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Synchrotron Spectra

The exact spectrum radiated by an electron is

Fs(v)=-——"-H, —~ A 7;@ KS/B(”]) dn (23)

mec? Ty
where v, is the characteristic emission frequency
Ve = 4.29°H, [uG].
Although Fs(v) is a maximum at 3V, to integrate over
a power law spectrum of electrons we approximate the
emission of an electron as a delta function at ., and
calculate the specific energy intensity:
Is(v) = L [7* dyn(vy) Ps(v)o(v — v,)

= 48X 10°(490)* " ng LHG™20{5m% oy

KEY FEATURES:

® Spectral dependence is the same as for in verse Comp-
ton

o H is the only new variable. If we can measure [C and
synchrotron radiation, we can solve for all the Intrinsic
parameters, 1.e. H and ny

Dan Schwartz
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Related Topics

We were not able to cover

1.

Black Body Radiation. Occurs in neutron stars, white
dwarfs, locally in accretion disks, and the cosmic microwave
background. The specific energy intensity is the Planck func-
tion:

Br(v) = Qh” (exp(1%) — 1)7" ergs/(Hz cm? sec ster).

. Equilibrium Distribution of Electrons

ONIEL) | 5 N(E,t) = S(E,t)

. Relativistic Beamlng Use the effective Doppler factor

= (1—50080) I = g'# 7

c e

. Absorption

e Atomic absorption by cold or warm gas

e Synchrotron self-absorption in radio sources

. Radiation Transfer

0 I(7,p,z)

2m dU
= I(

(r, 1, ) dp'dd

L X
ceemelric (esmele gy

Dan Schwartz
SAQ/CXC
11 September 2001



X-ray Astronomy School

I I I

10.
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